Describe an operator
f(x)=defx2+c
Reference a secondary calculation
f(g(x))=nutze (1)f(a0x4)g(x)=a0x4(1)
\MoveEqLeft0,99<1−P(A)k=1−pk+pk−0,99pk<0,01logp()k>logp(0,01)p=0,11k>log0,11(0,01)≈2,086k∈N+k≥3
Don’t comment after line
- works on a blackboard, looks bad on paper
0,990,99pkkk⇒k<1−P(A)k<1−pk<0,01>logp(0,01)>log0,11(0,01)≈2,086≥3∣ +pk−0,99∣ logp()∣ p=0,11∣ k∈N+
Use cases
\MoveEqLeftf(x)=defx2+c=(1)h(x)+c\overundersetsymmetrischauf [0,1]=∫∞−∞{ex−z0fu¨r 0≤x≤1∧z≥xsonstdx=∫0zex−zdx≪t
Don’t write long overbraces
f(x)=defx2+c=(1)h(x)+c\overundersetsymmetrischauf [0,1]=fu¨r x<0∫−∞00dx+∫0zex−zdxfu¨r 0≤x≤1 und z≥x+fu¨r 0≤x≤1 und z<x∫z10dx+∫1∞0dxx>1
Overlapping braces
Vertical and horizontal aligned braces
More
Annahmen:(A1):n≡3(mod19)(A2):n≡1(mod20)(A3):n≡2(mod21)(A4):n≡0(mod23)(A5):n≡1(mod22)Zu Zeigen:(Z1.1):n≡3(mod19)(Z2.1):n≡1(mod20)(Z3.1):n≡2(mod21)(Z4.1):n≡0(mod23)(Z5.1):n≡1(mod11)
\MoveEqLeftL((a+b)∗)=FS 1.2.8 *L(a+b)∗=FS 1.2.8 +(L(a)∪L(b))∗=FS 1.2.8 a,b∈Σ({a}∪{b})∗=Def. ∪{a,b}∗=Def. ∈{w∈{a,b}∗}=Def. ∣⋅∣⋅{w∈{a,b,c}∗∣∣w∣c=0}=Def. Σ{w∈Σ∗∣∣w∣c=0}
X=1≤i≤j≤n∑XijX=1≤i≤j≤n∑Xij