Describe an operator

\[
f(x) 
\overset{\text{def}}{=} x^2 + c
\overset{\text{nutze \eqref{eq:innerfunction}}}{=} f(a_0 x^4)
\]
\[
g(x) = a_0 x^4 
\]

Reference a secondary calculation

f(g(x)) \overset{\text{nutze \eqref{eq:inner}}}{=} f(a_0 x^4)
g(x) = a_0 x^4 \vphantom{eq:inner}\tag{*} 
f(g(x)) \overset{\text{nutze \eqref{eq:inner}}}{=} f(a_0 x^4)
g(x) = a_0 x^4 \label{eq:innerfunction}\label{eq:inner}\tag{\theequation}\refstepcounter{equation}

Comment stretchable arrows

Don’t comment after line

  • works on a blackboard, looks bad on paper

Use cases

Don’t write long overbraces

Comment matrix columns

minimal 34.svg

\documentclass{article}
\usepackage{amsmath,amssymb,mathtools,aligned-overset,array}
\begin{document}
\def\rb#1{\rotatebox{90}{$\xleftarrow{#1}$}}
\begin{tabular}{c}
$\begin{matrix}
\rb{text1}&\rb{text1}&\rb{text1}&\rb{text1}\\
\end{matrix}$\\
$\begin{bmatrix}
X_x & Y_x & Z_x & T_x \\
X_y & Y_y & Z_y & T_y \\
X_z & Y_z & Z_z & T_z \\
0 & 0 & 0 & 1
\end{bmatrix}$
\end{tabular}
\end{document}

Overlapping braces

minimal 35.svg

\documentclass{article}
\usepackage{amsmath,amssymb,mathtools,aligned-overset,array,xcolor}
\begin{document}
\begin{align}\label{eq:pqFormel}
y &= 2x^2 -3x +5\nonumber\\
& \hphantom{= \ 2\left(x^2-\frac{3}{2}\,x\right. }%
\textcolor{blue}{%
\overbrace{\hphantom{+\left(\frac{3}{4}\right)^2- %
\left(\frac{3}{4}\right)^2}}^{=0}}\nonumber\\[-11pt]
&= 2\left(\textcolor{red}{%
\underbrace{%
x^2-\frac{3}{2}\,x + \left(\frac{3}{4}\right)^2}%
}%
\underbrace{%
- \left(\frac{3}{4}\right)^2 + \frac{5}{2}}%
\right)\\
&= 2\left(\qquad\textcolor{red}{\left(x-\frac{3}{4}\right)^2}
\qquad + \ \frac{31}{16}\qquad\right)\nonumber\\
y\textcolor{blue}{-\frac{31}{8}}
&= 2\left(x\textcolor{cyan}{-\frac{3}{4}}\right)^2\nonumber
\end{align}
\end{document}

Vertical and horizontal aligned braces

minimal 36.svg

\documentclass{article}
\pagestyle{empty}
\usepackage{amsmath,amssymb,amsfonts,mathtools,aligned-overset,array,xcolor}
\begin{document}
\def\num#1{\hphantom{#1}}
\def\vsp{\vphantom{\rangle_1}}
\begin{equation*}
\frac{300}{5069}%
\underbrace{\longmapsto\vphantom{\frac{1}{1}}}_{%
\mathclap{\substack{%
\Delta a=271\num9\vsp \\[2pt]
\Delta b=4579\vsp\\[2pt]
\text{$1$ iteration}%
}}} \frac{29}{490}%
\underbrace{\longmapsto \frac{19}{321}\longmapsto}_{%
\mathclap{\substack{%
\Delta a=10\num{9}=\langle271\rangle_{29}\num{20}\\[2pt]
\Delta b=169=\langle4579\rangle_{490}\\[2pt]
\text{$2$ iterations}
}}} \frac{9}{152}
\underbrace{\longmapsto \frac{8}{135}\longmapsto\dots\longmapsto}_{%
\substack{%
\Delta a=1\num{7}=\langle10\rangle_{9}\num{119}\\[2pt]
\Delta b=17=\langle169\rangle_{152}\\[2pt]
\text{$8$ iterations}
}} \frac{1}{16}
\underbrace{\longmapsto\dots\longmapsto\vphantom{\frac{8}{135}}}_{%
\substack{%
\Delta a=0=\langle1\rangle_{1}\num{76} \\[2pt]
\Delta b=1=\langle17\rangle_{16} \\[2pt]
\text{$8$ iterations}
}} \frac{1}{1}
\end{equation*}
\end{document}

More