Numbers
Delimiters
\documentclass { article } \pagestyle {empty}
\usepackage { mathtools, amssymb, amsfonts }
\begin {document}
$ \displaystyle \left( \left( \left( ( ) \sqrt{2} \right) \right) \right) $ \quad
$ \displaystyle\delimitershortfall=-1pt \left( \left( \left( ( ) \sqrt{2} \right) \right) \right) $ \qquad
\end {document}
( ( ( ( ) 2 ) ) ) ( ( ( ( ) 2 ) ) )
\left ( \left ( \left ( ( ) \sqrt {2} \right ) \right ) \right ) \qquad
\Bigg ( \bigg ( \Big ( ( ) \sqrt {2} \Big ) \bigg ) \Bigg )
Fractions
Dynamic macro
\documentclass { article } \pagestyle {empty}
\usepackage { amsmath, lipsum, xcolor }
\let\oldfrac\frac
\renewcommand { \frac }[2]{ %
\mathchoice
{ \oldfrac {#1}{#2}} % displaystyle
{^{#1} \! /_{ \! #2}} % textstyle
{ \oldfrac {#1}{#2}} % scriptstyle
{ \oldfrac {#1}{#2}} % scriptscriptstyle
}
\begin {document}
{ \color {gray} \lipsum [1][1-2]}
$ \frac{1}{2} + \frac{3}{4} = \frac{5}{4} $
{ \color {gray} \lipsum [1][1-2]}
$ \tfrac{1}{2} + \tfrac{3}{4} = \tfrac{5}{4} $
{ \color {gray} \lipsum [1][1-2]}
\[
\frac{1}{2} + \frac{3}{4} = \frac{5}{4}
\]
\end {document}
Static export
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. 1 / 2 + 3 / 4 = 5 / 4 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. 2 1 + 4 3 = 4 5 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
2 1 + 4 3 = 4 5
\begin {align*}
{^{1} \! /_{ \! 2}} + {^{3} \! /_{ \! 4}} = {^{5} \! /_{ \! 4}} \\
\tfrac {1}{2} + \tfrac {3}{4} = \tfrac {5}{4} \\
\frac {1}{2} + \frac {3}{4} = \frac {5}{4}
\end {align*}
Split Equations to equal part to Multi column
[p] easy to move equations up and down
[p] allows tag placement in every line
Dynamic macro
\documentclass { article }
\usepackage { mathtools,amssymb,amsfonts,multicol }
\begin {document}
\begin {multicols}{6} \allowdisplaybreaks\vspace *{-1cm}
\begin {align*} %
a & = b+c \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d \\
0 & = t+d
\end {align*}
\end {multicols}
\end {document}
Static export
a 0 = b + c = t + d 0 0 = t + d = t + d 0 0 = t + d = t + d 0 0 = t + d = t + d 0 0 = t + d = t + d 0 = t + d
\begin {align*}
a &= b+c & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d \\
0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d
\end {align*}
Aligned overset
Dynamic macro
\documentclass { article } \pagestyle {empty}
\usepackage { mathtools, amssymb, amsfonts, aligned-overset }
\begin {document}
\begin {align*} \MoveEqLeft{}
\Big( \exists\, y : \neg \big( P_1(y) \lor P_2(y) \big) \Big) \lor \neg \big( \forall\, z : \neg P_2(z) \lor P_1(z) \big) \to \big( \exists\, x : \neg P_1(x) \big) \\
\mathrlap{\xLongrightarrow{\hspace{5.5em}}}
\overset{\text{Proposition 0.5.6}} & {=}
\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \big(\exists\, x : \neg P_1(x)\big) \\
\overset{\text{Proposition 0.5.6}} & {\equiv}
\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Implikation}} & {\equiv}
\neg \Big( \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{De Morgan II}} & {\equiv}
\Big( \neg\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \neg\neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Doppelte Negation}} & {\equiv}
\Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Kommutativität von $ \lor $ }} & {\equiv}
\neg\big(\forall\, x : P_1(x)\big) \lor \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big)
\end {align*}
\end {document}
Static export
( ∃ y : ¬ ( P 1 ( y ) ∨ P 2 ( y ) ) ) ∨ ¬ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) → ( ∃ x : ¬ P 1 ( x ) ) ≡ Proposition 0.5.6 ¬ ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∨ ¬ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) → ( ∃ x : ¬ P 1 ( x ) ) ≡ Proposition 0.5.6 ¬ ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∨ ¬ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) → ¬ ( ∀ x : P 1 ( x ) ) ≡ Implikation ¬ ( ¬ ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∨ ¬ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) ) ∨ ¬ ( ∀ x : P 1 ( x ) ) ≡ De Morgan II ( ¬¬ ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∧ ¬¬ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) ) ∨ ¬ ( ∀ x : P 1 ( x ) ) ≡ Doppelte Negation ( ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∧ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) ) ∨ ¬ ( ∀ x : P 1 ( x ) ) ≡ Kommutativit a ¨ t von ∨ ¬ ( ∀ x : P 1 ( x ) ) ∨ ( ( ∀ y : P 1 ( y ) ∨ P 2 ( y ) ) ∧ ( ∀ z : ¬ P 2 ( z ) ∨ P 1 ( z ) ) )
\begin {align*} \qquad & \hspace {-2em}
\Big ( \exists\, y : \neg \big ( P_1(y) \lor P_2(y) \big ) \Big ) \lor \neg \big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \to \big ( \exists\, x : \neg P_1(x) \big ) \\ &
\overset { \mathclap { \text {Proposition 0.5.6}}}{ \equiv } \hspace {2em} \neg\big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \lor \neg\big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \to \big ( \exists\, x : \neg P_1(x) \big ) \\ &
\overset { \mathclap { \text {Proposition 0.5.6}}}{ \equiv } \hspace {2em} \neg\big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \lor \neg\big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \to \neg\big ( \forall\, x : P_1(x) \big ) \\ &
\overset { \mathclap { \text {Implikation}}}{ \equiv } \hspace {1.3em} \neg \Big ( \neg\big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \lor \neg\big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \Big ) \lor \neg\big ( \forall\, x : P_1(x) \big ) \\ &
\overset { \mathclap { \text {De Morgan II}}}{ \equiv } \hspace {1.5em} \Big ( \neg\neg\big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \land \neg\neg\big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \Big ) \lor \neg\big ( \forall\, x : P_1(x) \big ) \\ &
\overset { \mathclap { \text {Doppelte Negation}}}{ \equiv } \hspace {2.3em} \Big ( \big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \land \big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \Big ) \lor \neg\big ( \forall\, x : P_1(x) \big ) \\ &
\overset { \mathclap { \text {Kommutativität von $ \lor $ }}}{ \equiv } \hspace {2.9em} \neg\big ( \forall\, x : P_1(x) \big ) \lor \Big ( \big ( \forall\, y : P_1(y) \lor P_2(y) \big ) \land \big ( \forall\, z : \neg P_2(z) \lor P_1(z) \big ) \Big )
\end {align*}
More
[ ε ] ≡ A [ 0 ] ≡ A [ 01 ] ≡ A [ 00 ] ≡ A [ 1 ] ≡ A [ 11 ] ≡ A = { ε } = { x 0 ∣ x ∈ Σ ∗ ∧ ∣ x ∣ 0 mod 2 = 1 } = { x 1 ∣ x ∈ Σ ∗ ∧ ∣ x ∣ 0 mod 2 = 1 } = { x 0 ∣ x ∈ Σ ∗ ∧ ∣ x ∣ 0 mod 2 = 0 } = { x 1 ∣ x ∈ Σ ∗ ∧ ∣ x ∣ 0 mod 2 = 0 } = { x 11 y ∣ x , y ∈ Σ ∗ }
[ ε ] ≡ A [ a k ] ≡ A [ c ] ≡ A [ a l c ] ≡ A [ cc ] ≡ A = { b n ∣ n ∈ N } = { w ∈ { a , b } ∗ ∣ ∣ w ∣ a = k } f u ¨ r k ∈ N + = { x cy ∣ x , y ∈ { a , b } ∗ ∧ ∣ x ∣ a − ∣ y ∣ a = 0 } = { x cy ∣ x , y ∈ { a , b } ∗ ∧ ∣ x ∣ a − ∣ y ∣ a = l } f u ¨ r l ∈ N + = { w , x cy ∣ w ∈ { a , b , c } ∗ ∧ ∣ w ∣ c ≥ 2 ∧ x , y ∈ { a , b } ∗ ∧ ∣ y ∣ a > ∣ x ∣ a + 2 }
P 1 : S A b C a A a C c C → b ∣ abbb ∣ a c bbb ∣ a A bbbbb ∣ a A C bbbbb ∣ a A CC bbbbb → AA C bb ∣ AA bb → C b → aa → a c → cc
X = 1 ≤ i ≤ j ≤ n ∑ X ij X = 1 ≤ i ≤ j ≤ n ∑ X ij