Numbers

Delimiters

minimal 82.svg

\documentclass{article}\pagestyle{empty}
\usepackage{mathtools, amssymb, amsfonts}
\begin{document}
$\displaystyle \left( \left( \left( ( ) \sqrt{2} \right) \right) \right)$ \quad
$\displaystyle\delimitershortfall=-1pt \left( \left( \left( ( ) \sqrt{2} \right) \right) \right)$ \qquad
\end{document}
\left( \left( \left( ( ) \sqrt{2}  \right) \right) \right) \qquad
\Bigg( \bigg( \Big( ( ) \sqrt{2}  \Big) \bigg) \Bigg)

Fractions

Dynamic macro
minimal 78.svg

\documentclass{article}\pagestyle{empty}
\usepackage{amsmath, lipsum, xcolor}
\let\oldfrac\frac
\renewcommand{\frac}[2]{%
  \mathchoice
    {\oldfrac{#1}{#2}}  % displaystyle
    {^{#1}\!/_{\!#2}} % textstyle
    {\oldfrac{#1}{#2}}  % scriptstyle
    {\oldfrac{#1}{#2}}  % scriptscriptstyle
}
\begin{document}
{\color{gray}\lipsum[1][1-2]}
$\frac{1}{2} + \frac{3}{4} = \frac{5}{4}$
{\color{gray}\lipsum[1][1-2]}
$\tfrac{1}{2} + \tfrac{3}{4} = \tfrac{5}{4}$
{\color{gray}\lipsum[1][1-2]}
\[
\frac{1}{2} + \frac{3}{4} = \frac{5}{4}
\]
\end{document}

Static export

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.

\begin{align*}
{^{1}\!/_{\!2}} + {^{3}\!/_{\!4}} = {^{5}\!/_{\!4}} \\
\tfrac{1}{2} + \tfrac{3}{4} = \tfrac{5}{4} \\
\frac{1}{2} + \frac{3}{4} = \frac{5}{4}
\end{align*}

Split Equations to equal part to Multi column

  • [p] easy to move equations up and down
  • [p] allows tag placement in every line

Dynamic macro
minimal 37.svg

\documentclass{article}
\usepackage{mathtools,amssymb,amsfonts,multicol}
\begin{document}
\begin{multicols}{6}\allowdisplaybreaks\vspace*{-1cm}
\begin{align*}%
    a &= b+c \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d \\
    0 &= t+d
\end{align*}
\end{multicols}
\end{document}

Static export

\begin{align*}
    a &= b+c & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d \\
    0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d
\end{align*}

Aligned overset

Dynamic macro

minimal 77.svg

\documentclass{article}\pagestyle{empty}
\usepackage{mathtools, amssymb, amsfonts, aligned-overset}
\begin{document}
\begin{align*}\MoveEqLeft{}
    \Big( \exists\, y : \neg \big( P_1(y) \lor P_2(y) \big) \Big) \lor \neg \big( \forall\, z : \neg P_2(z) \lor P_1(z) \big) \to \big( \exists\, x : \neg P_1(x) \big) \\
    \mathrlap{\xLongrightarrow{\hspace{5.5em}}}
    \overset{\text{Proposition 0.5.6}}&{=} 
    \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \to \big(\exists\, x : \neg P_1(x)\big) \\
    \overset{\text{Proposition 0.5.6}}&{\equiv} 
    \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \to \neg\big(\forall\, x : P_1(x)\big) \\
    \overset{\text{Implikation}}&{\equiv} 
    \neg \Big( \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
    \overset{\text{De Morgan II}}&{\equiv} 
    \Big( \neg\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \neg\neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
    \overset{\text{Doppelte Negation}}&{\equiv} 
    \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
    \overset{\text{Kommutativität von $\lor$}}&{\equiv} 
    \neg\big(\forall\, x : P_1(x)\big) \lor \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big)
\end{align*}
\end{document}

Static export

\begin{align*} \qquad&\hspace{-2em}
\Big( \exists\, y : \neg \big( P_1(y) \lor P_2(y) \big) \Big) \lor \neg \big( \forall\, z : \neg P_2(z) \lor P_1(z) \big) \to \big( \exists\, x : \neg P_1(x) \big) \\&
\overset{\mathclap{\text{Proposition 0.5.6}}}{\equiv}\hspace{2em} \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \to \big(\exists\, x : \neg P_1(x)\big) \\&
\overset{\mathclap{\text{Proposition 0.5.6}}}{\equiv}\hspace{2em} \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \to \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Implikation}}}{\equiv}\hspace{1.3em} \neg \Big( \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{De Morgan II}}}{\equiv}\hspace{1.5em} \Big( \neg\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \neg\neg\big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Doppelte Negation}}}{\equiv}\hspace{2.3em} \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Kommutativität von $\lor$}}}{\equiv}\hspace{2.9em} \neg\big(\forall\, x : P_1(x)\big) \lor \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor  P_1(z)\big) \Big)
\end{align*}

More