Let f=x2+111: P(X+Y=k)=x∈X(Ω)∑P(X=x)⋅P(Y=k−x)=x=0∑n(xn)px(1−p)n−x⋅(k−xm)qk−x(1−q)m−(k−x) \documentclass{article} \usepackage{mathtools,amssymb,amsfonts} \begin{document} Let $f = x^2 + \frac{1}{11}$: \begin{align*} \qquad&\hspace{-2em} \mathbb{P}(X+Y=k) = \sum_{\mathclap{x \in X(\Omega)}} \mathbb{P}(X = x) \cdot \mathbb{P}(Y=k-x) \\& = \sum_{x = 0}^n \binom{n}{x}\, p^x\, (1-p)^{n-x} \cdot \binom{m}{k-x}\, q^{k-x}\, (1-q)^{m-(k-x)} \end{align*} \end{document}