Shrink long fractions
a = \frac{ \splitfrac{xxxxxxx}{+ xxxx} }{(1)}
a = \frac{ \splitdfrac{xxxxxxx}{+ xxxx} }{(2)}
- use (3) in Obsidian, VS Code, Quartz !inconsistent
\begin{aligned}[b]
a = \frac{ \begin{aligned} xxxxxxx \quad\\[-1ex] + xxxx \end{aligned} }{(3)}
- use (4) in Obsidian, VS Code, Quartz, Overleaf !warning to use aligned instead
a = + \frac{ \begin{split} xxxxxxx \quad\\[-1ex] + xxxx \end{split} }{(4)}
- use (5) in Obsidian, VS Code, Quartz, Overleaf
a = \frac{ \substack{xxxxxxx \\ +xxxx} }{(5)}
Indent subsequent lines
R1=aiπρi∫0h(hr2−r1y+r1)−2dy=aiπρi[−hr2−r1(hr2−r1y+r1)1]0h=aiπρi(r1(r2−r1)h−r2(r2−r1)h)+aiπρi⋅r2−r1h(r1r2r2−r1 r2r1)
- Vertically aligned dots (Mathjax only)
\MoveEqLefta+b+c+d=a+b+c+d=0+1+2+3\vdotswithin==result
Set operators as column divider
More
a=z\splitfracxy+xy+xy+xy+xy+xy+xy+xy+xy
\MoveEqLeftf(x+y)=\framebox[8cm]firstexpression=[t]\framebox[10cm]overlongsecond\framebox[4cm]expression=\framebox[7cm]thirdexpression(1)(2)(3)
\MoveEqLeftA=\framebox[8cm]firstexpression=\framebox[10cm]second\framebox[4cm]expression=\framebox[7cm]thirdexpression(1)(2)(3)
R1=aiπρi∫0h(hr2−r1y+r1)−2dy=aiπρi[−hr2−r1(hr2−r1y+r1)1]0h=Summanden in der Klammer vertauschenaiπρi(−hr2−r1(r2−r1+r1)1+hr2−r1r11)=nutze (1)aiπρi(r1(r2−r1)h−r2(r2−r1)h)=aiπρi⋅r2−r1h(r1r2r2−r1 r2r1)=a+b+c+d+e+f+g+h+i=diπ(r2−r1)ρihr1r2r2−r1=aiπρir1r2h
H(zp)=\eqrefeq:wegintegral4πI1la¨uft 1 Umdrehung auf ϕ∮r3ds×r=4πI1∫r3eϕ×radϕ=4πI1∫02πr3eϕ×radϕ=\eqrefeq:abstandNorm4πI1a∫02πr3eϕ×rdϕ=4πI1a∫02πNenner unabha¨ngig von ϕ(a2+(zp−h)2)3eϕ×rdϕ=4πI1a∫02π(a2+(zp−h)2)23eϕ×rdϕ=\eqrefeq:kreuzprodukt4π(a2+(zp−h)2)23I1a∫02πeϕ×rdϕ=4π(a2+(zp−h)2)23I1a∫02π−cosϕ(zp−h)−sinϕ(zp−h)adϕ=4π(a2+(zp−h)2)23I1acosϕ(zp−h)sinϕ(zp−h)aϕ02π=4π(a2+(zp−h)2)23I1a⋅002πa−−−000=4π(a2+(zp−h)2)23I1a⋅2πaez=2(a2+(zp−h)2)23I1a2ez
\framebox[1em]x=\framebox[3em]x=\framebox[4em]x=…⟶\MoveEqLeft\framebox[1em]x=\framebox[3em]x=\framebox[4em]x⋮
\begin{align*}\MoveEqLeft{}
\framebox[3em]{x} = \framebox[16em]{x} \\&
= \begin{aligned}[t] \framebox[20em]{$\mathrm{x_1}$} \\ \framebox[7em]{$\mathrm{x_2}$} \end{aligned} \\&
= \framebox[15em]{x}
\end{align*}
\framebox[1em]x+\framebox[2em]x\framebox[10em]x⟶\framebox[1em]x+
\MoveEqLeftP(X+Y=k)=x∈X(Ω)∑P(X=x)⋅P(Y=k−x)=x=0∑n(xn)px(1−p)n−x⋅(k−xm)qk−x(1−q)m−(k−x)