Numbers
Delimiters
\documentclass{article} \title{delimiters}
\usepackage{mathtools, amssymb, amsfonts}
\begin{document}
$\displaystyle \left( \left( \left( ( ) \sqrt{2} \right) \right) \right)$ \quad
$\displaystyle\delimitershortfall=-1pt \left( \left( \left( ( ) \sqrt{2} \right) \right) \right)$ \qquad
\end{document}
\left( \left( \left( ( ) \sqrt{2} \right) \right) \right) \qquad
\Bigg( \bigg( \Big( ( ) \sqrt{2} \Big) \bigg) \Bigg)
Fractions
Dynamic macro
\documentclass{article} \title{fraction styles}
\usepackage{amsmath, lipsum, xcolor}
\let\oldfrac\frac
\renewcommand{\frac}[2]{%
\mathchoice
{\oldfrac{#1}{#2}} % displaystyle
{^{#1}\!/_{\!#2}} % textstyle
{\oldfrac{#1}{#2}} % scriptstyle
{\oldfrac{#1}{#2}} % scriptscriptstyle
}
\begin{document}
{\color{gray}\lipsum[1][1-2]}
$\frac{1}{2} + \frac{3}{4} = \frac{5}{4}$
{\color{gray}\lipsum[1][1-2]}
$\tfrac{1}{2} + \tfrac{3}{4} = \tfrac{5}{4}$
{\color{gray}\lipsum[1][1-2]}
\[
\frac{1}{2} + \frac{3}{4} = \frac{5}{4}
\]
\end{document}
Static export
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis.
\begin{align*}
{^{1}\!/_{\!2}} + {^{3}\!/_{\!4}} = {^{5}\!/_{\!4}} \\
\tfrac{1}{2} + \tfrac{3}{4} = \tfrac{5}{4} \\
\frac{1}{2} + \frac{3}{4} = \frac{5}{4}
\end{align*}
Split Equations to equal part to Multi column
- [p] easy to move equations up and down
- [p] allows tag placement in every line
Dynamic macro
\documentclass{article} \title{split equations to equal part}
\usepackage{mathtools,amssymb,amsfonts,multicol}
\begin{document}
\begin{multicols}{6}\allowdisplaybreaks\vspace*{-1cm}
\begin{align*}%
a &= b+c \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d \\
0 &= t+d
\end{align*}
\end{multicols}
\end{document}
Static export
\begin{align*}
a &= b+c & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d \\
0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d & 0 &= t+d
\end{align*}
Aligned overset
Dynamic macro
\documentclass{article} \title{aligned overset}
\usepackage{mathtools, amssymb, amsfonts, aligned-overset}
\begin{document}
\begin{align*}\MoveEqLeft{}
\Big( \exists\, y : \neg \big( P_1(y) \lor P_2(y) \big) \Big) \lor \neg \big( \forall\, z : \neg P_2(z) \lor P_1(z) \big) \to \big( \exists\, x : \neg P_1(x) \big) \\
\mathrlap{\xLongrightarrow{\hspace{5.5em}}}
\overset{\text{Proposition 0.5.6}}&{=}
\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \big(\exists\, x : \neg P_1(x)\big) \\
\overset{\text{Proposition 0.5.6}}&{\equiv}
\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Implikation}}&{\equiv}
\neg \Big( \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{De Morgan II}}&{\equiv}
\Big( \neg\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \neg\neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Doppelte Negation}}&{\equiv}
\Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\
\overset{\text{Kommutativität von $\lor$}}&{\equiv}
\neg\big(\forall\, x : P_1(x)\big) \lor \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big)
\end{align*}
\end{document}
Static export
\begin{align*} \qquad&\hspace{-2em}
\Big( \exists\, y : \neg \big( P_1(y) \lor P_2(y) \big) \Big) \lor \neg \big( \forall\, z : \neg P_2(z) \lor P_1(z) \big) \to \big( \exists\, x : \neg P_1(x) \big) \\&
\overset{\mathclap{\text{Proposition 0.5.6}}}{\equiv}\hspace{2em} \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \big(\exists\, x : \neg P_1(x)\big) \\&
\overset{\mathclap{\text{Proposition 0.5.6}}}{\equiv}\hspace{2em} \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \to \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Implikation}}}{\equiv}\hspace{1.3em} \neg \Big( \neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \lor \neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{De Morgan II}}}{\equiv}\hspace{1.5em} \Big( \neg\neg\big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \neg\neg\big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Doppelte Negation}}}{\equiv}\hspace{2.3em} \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big) \lor \neg\big(\forall\, x : P_1(x)\big) \\&
\overset{\mathclap{\text{Kommutativität von $\lor$}}}{\equiv}\hspace{2.9em} \neg\big(\forall\, x : P_1(x)\big) \lor \Big( \big(\forall\, y : P_1(y) \lor P_2(y)\big) \land \big(\forall\, z : \neg P_2(z) \lor P_1(z)\big) \Big)
\end{align*}